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ABSTRACT Maps of defoliation caused by the gypsy moth, Lymantria dispar (1..), as well as pmnt
estimates of egg mass density and counts of male moths captured in pheromone-baited traps
collected from the Shenandoah National Park and George Washington National Forest from 1989
1992 were assembled in a geographic information system. A maximum likelihood estimation pro-
cedure was used to fit 15 logistic regression models that predicted the probability of noticeable
defoliation in 1-ha grid cells from various combinations of egg mass densities, counts of males in
pheromone traps, presence of defoliation in the previous year, and distance to the expanding gypsy
moth population front. Models that incorporated egg mass density estimates and distance to the
infested front provided the most reliable predictions of defoliation probability. The performance of
these models was comparable with decision errors encountered using various egg mass density
thresholds alone. The errors associated with application of egg mass density thresholds and the
various models were high and highlighted the need for improved methods for predicting defoliation.
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POPULATIONS OF THE gypsy moth, Lymantria dispar (L.),
in North America exhibit eruptive behavior; densities
vary through several orders of magnitude, often reach-
ing epidemic levels that have spectacular effects on
their habitat (i.e., total defoliation of host trees)
(Montgomery and Wallner 1988), It is not uncommon
for gypsy moth populations to persist for many years
at dengities that are so low that it may be difficult to
detect any life stages except male moths. Oceasionally,
for unknown reasons, population densities increase,
often to defoliating levels of >6,000 egg masses per
hectare, within only a few generations. These out-
break populations may persist for several years before
collapsing.

Gypsy moth outbreaks often occur over very large
areas but are notoriously difficult to predict (Liebhold
and Elkinton 1989). Previous models developed for
predicting defoliation have been based mostly upon
preseason counts of egg masses (Gansner et al. 1985,
Montgomery 1990, Williams et al. 1991, Liebhold et al.
1993b). Though there is a significant relationship be-
tween egg mass density and subsequent defoliation at
the stand level, the variance about this relationship is
great, Consequently, considerable error is encoun:
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tered in using this method for prediction of defolia-
tion.

Large areas of forest land are sprayecl every year to
prevent gypsy moth defoliation; >3 million ha were
aerially treated as part of the USDA Forest Service
Cooperative Suppression Program over the last 15 yr.
One of the major impediments to implementation of
an effective integrated gypsy moth management pro-
gram is the lack of a precise, yet economical procedure
for forecasting defoliation. Most gypsy moth manage-
ment programs rely on stand-level estimates of egg
mass densities as the basis for decision-making (Ravlin
et al. 1987). The development of a more precise
method for predlchnn of defoliation could greatly
improve the e mency of gypsy moth management
programs,

Previous models developed for predmtmg out-
breaks have relied on data collected at individual
stands and have largely ignored spatial processes.
Thirty years ago, Campbell (1967) recognized that the
dynamics of gypsy moth populations are affected by
population densities in nearby areas; populations are
often synchronized in their yearly luctuations during
the development of gypsy moth outbreaks or out-
breaks appear to spread (Liebhold and McManus
1991, Williams and Liebhold 1995, Zhou and I.nebhnld
1995).

The advent of geographical infurmatinn systems has
opened up the possibility to capture quantitatively
these spatial relations to improve the quality of fore-
casts of gypsy moth defoliation, Hohn et al. (1993)
developed a geostatistical model that forecasts prob.
abilities of future gypsy moth defoliation: from:histor-
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ical spatial patterns of defoliation in the same area; this
model quantified the temporal persistence and spread
of defoliation in a predictive model. Gage et al. (1990)
used a Geographical Information System to develop
models for predicting pheromone trap-catch from
trap-catch in previous years and demonstrated how
trap capture maps were related to defoliation maps.
Liebhold et al. (1995) showed that gypsy moth egg
mass counts are more highly spatially correlated with
subsequent defoliation than are counts of trapped
males. Gribko et al. (1995) developed a logistic model
and Zhou and Liebhold (1995) develeped a series of
transition models that incorporated the spatio-tempo-
ral autocorrelation of defoliation, and also incorpo-
rated the spatial correlation of preseason egg mass
counts with subsequent defoliation to produce pre-
dictions of defoliation that were more accurate than
the 3-dimensional kriging model of Hohn et al. (1993).

In all of the previous spatial models described
above, predictions have been made over a large scale
(ie., ~2 by 2 km cells or greater). Since actual gypsy
moth management decisions (i.e., decisions about aer-
ial suppression) are made at a much smaller scale
(gypsy moth spray blocks typically range from 10 to
200 ha [Twardus and Machesky 1290]) these models
cannot be reliably applied for real management deci-
sions. In this study, we developed several logistic re-
gression models for forecasting gypsy moth defolia-
tion. These models were similar in form to those
developed by Gribko et al. (1995}, but they were
parameterized using data collected over a smaller area
and consequently these models can be more reliably
applied to actual management decisions.

Methods and Materials

All data used in this study were collected from the
Appalachian Integrated Pest Management (AIPM)
program. The Appalachian IPM program was a joint
program of the USDA Forest Service, and various state
and other national agencies from 1988-92 (Reardon
1991). The objective of ATPM was to demonstrate the
use of integrated pest management of the gypsy moth
in the central Appalachian Mountains in a 5.5 mil-
lion-ha area in Virginia and West Virginia,

During the AIPM program, a large number of for-
ested areas were aerially sprayed to prevent defolia-
tion by the gypsy moth. Because we wished to develop
models for predicting defoliation by the gypsy moth in
the absence of spraying, we only used data collected
inside of the Shenendoah National Park (SNP) and
the George Washington National Forest (GWNEF).
Most of the SNP and GWNF is composed of forest
types susceptible to defoliation by the gypsy moth but
aerial suppression was rarely used within these areas.
Areas that were within 100 m of a treatment (sprayed)
area were not used in this study. Data from the GWNF
were used to parameterize models and data from both
GCWNF and SNP were used to evaluate the accuracy
of predictions from these models. The data used to
build models consisted of 4 data themes: defoliation,
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Fig, 1. Distribution of defoliation in SNP and GWNF
1990. Location of the boundary of 10 males per trap in 1990
from Sharov et al. (1995) is shown as a heavy black line.

egg mass densities, pheromone trap counts, and dis-
tance from the population boundary.

Defoliation was recorded with the use of high-alti-
tude color-infrared photography (Ciesla and Accia-
vatd 1982) which was collected at the approximate
week of peak defoliation. Optical bar photography was
returned to the laboratory and the boundaries of areas
with noticeable defoliation were recorded on stan-
dard 1:24,000 topographical maps. Defoliation poly-
gons were digitized using a vector-based Geographical
[nformation System, and then imported to the raster
Geographical Information System, GRASS (U.S. Army
Corps of Engineers 1993), by rasterizing these defo-
liation polygons using a 1-ha raster system using a
universal transverse mercator projection (Snyder
1987). The minimum level for detection of defoliation
using this method is approximately 30%. Thus, every 1
ha cell was classified as either 0 or 1, depending on the
presence of noticeable defoliation (Fig. 1).

Gypsy moth pheromone traps were deployed an-
nually over the AIPM area on an ~2- by 2-km grid,
These traps were standard disparlure-baited milk car-
ton traps {(Schwalbe 1981). At the end of the trapping
season, the number of males within each trap was
recorded, as were the universal transverse mercator
coordinates {estimated from topographical maps).
Whenever the number of males per trap exceeded 200,
egg mass densities were sampled using 3-10 fixed-
radius plots of 0.01-ha (Liebhold et al. 1994) in each
1-km? cell coincident with the trap (Fig, 2). Cells with
a catch >500 were sampled first, and- cells with a
capture of 200-500 male moths were sampled as time
allowed (Rutherford and Fleischer 1989, Fleischer et
al. 1991). Ege mass sample plots were situated as
widely dispersed as possible within each area though
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Fig. 2. Posting of 1980 egg mass plot locations in SNP and GWNF.,

plots were preferentially located in stands considered
capable of supporting gypsy moth populations (i.e.,
preferred tree species were present) (Rutherford and
Fleischer 1989). The universal transverse mercator
coordinates of each egg mass plot were estimated from
1:24:000 topographical maps.

We assembled the pheromone trap data from the
Appalachian IPM program from each year and esti-
mated an interpolated trap capture at each 100- X
100-m grid node, using ordinary kriging. Ordinary
kriging estimates values at unsampled locations as a
weighted average of values at nearby locations (Lieb-
hold et al. 1993a, Isaaks and Srivastava 19893). We also
used ordinary kriging to create a grid {100 m between

each node) of estimated egg mass densities at each
grid cell using egg mass plot data from each year
(Liebhold et al. 1991). If a grid node was >500 m from
an egg mass plot, data from that node were excluded
from the analyses for that year because geostatistical
analysis of egg mass data indicated that spatial depen-
dence in egg mass counts rapidly declines at distances
exceeding 500 m (Liebhold et al. 1991, Sharov et al.
1996b) and kriged estimates would be unreliable.
The AIPM program was located along the expand-
ing front of gypsy moth distribution in North America.
Therefore, most of the outbreaks occurring from 1988
to 1992 were the 1** gypsy moth outbreaks in these
areas. Because the timing of defoliation in these areas
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was related to their position relative to the expanding
front, this information was included in the analysis,
For each cell in the GWNF and SNP, we calculated the
distance to the boundary of 10 males per trap esti-
mated using the “best classification” method of Sharov
et al. (1995) (Fig. 1). Sharov et al. (1996a) found that
the 10 males per trap boundary was the most stable and
reliable boundary estimated along the expanding
front, |

Logistic regression was used to predict the proba-
bility of defoliation in a manner similar to that used by
Gribko et al. (1995). In other studies, we have used
3-dimensional kriging (Hohn et al. 1993) and cellular
automata models (Zhou and Liebhold 1995) for fore-
casting defoliation. Comparison of the performance of
all 3 types of models indicated that they yield very
similar predictions and we have recommended the use
of logistic regression models because of their simplic-
ity of estimation (Liebhold et al. 1996).

Data from all 4 yr of study (1988-1992) in GWNF
were pooled to parameterize a single logistic regres-
sion model. Data from SNP were reserved for model
testing. The logistic model predicted the probability of
noticeable defoliation at each 1 ha-cell from several
independent variables corresponding to the same cell:
log egg mass density estimated at each cell using or-
dinary kriging, the presence (0,1) of defoliation at the
same cell in the previous year, distance to the expand-
ing front estimated from the boundary of 10 males/
trap, and log number of males per pheromone trap
estimated at each cell using ordinary kriging. The
LOGISTIC procedure of SAS, which fits linear logistic
regression models for binary response data by maxi-
mum likelihood, was used in this analysis (SAS Insti-

tute 1992, Hosmer and Lemeshow 1989). The logit

function had the form

, _ P
logit(p) = ln(l —

where p is the response probability (in this case the
probability that the cell will be defoliated), a is the
intercept parameter, by, by, bs,... are the vectors of
slope parameters, and x,, %y, Xa,... are the vectors of
independent variables. The value of p could then be
calculated as

)=u + b'x, (1]

EI‘UE“- (»)

p= 1 + Elngit{p]' [2]
Fourteen models that used every combination of the
4 independent variables (log mass density, log number
of males per pheromone trap, distance (KM) from the
10 males/trap boundaty, prescence (0,1) of defolia-
tion in‘the same cell in the previous year) in equation
1 were estimated from data in GWNF,

~ We applied each of the 15 logistic regression models
to predict defoliation for each of the 4'yr-of the ATPM
program in both GWNF and SNP and predicted prob-
abilities of defoliation were compared with observed
defoliation. In order to use p for decision-making; it is
necessary to adopt a threshold probability, p'; when
estimated p is above the threshold, the cell will be
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Tablel. Matrix of spray decision outcomes
No defoliation Defoliation
Don't spray X; {correct)} X, (error)
Spray X, (error) X, {correct)

sprayed, and when estimated p < p' then no action is
taken. The selection of a value for p’ will depend on
managerial constraints, specifically the relative bene-
fits and costs of correct and incorrect decisions. The
2 types of correct and 2 types of erroneous decisions
are shown in Table 1. To evaluate the performance of
each model, we simulated the use of decision-making
with these models using values of p’ ranging from 0.1
to 0.9.

We classified each 1-ha cellin GWNF and SNP into
1 of 4 possible outcomes (Table 1), depending on the
predicted probability of defoliation (from each
model) versus the observed defoliation. We also sim-
ulated decision-making by applying 1 of several widely
used egg mass density thresholds to kriged egg mass
density surfaces. This use of density threshold simu-
lated the application of current gypsy moth manage-
ment decision-making as is currently programmed in
the GypsES decision support system (Foster et al.
1992, Gottschalk et al. 1996). We defined 3 types of
errors; '

all errors = (X, + X3)/ (X, + X, + X3 + X)),
EI‘I'UI' 2 = XEI (Xl + Xﬂ)
error 3 = X,/ (X; + X,)

where X, - X, are the frequencies.(counts) in each cell
in Table 1.

Results and Discussion

A map of kriged estimates of male moth capture is
shown in Fig 3. During the AIPM program, the range
of the gypsy moth was expanding to the south in this
region and this phenomenon can be observed in these
maps; counts were generally higher to the north and
increased with progressive years (Sharov et al. 1996b).
This phenomenon can also be observed in kriged maps
of egg mass density (Fig. 4).

We developed 15 logistic regression models that
used all possible combinations of the 4 independent
variables (log mass density, log number of males per
pheromone trap, distance (KM) from the 10 males/
trap boundary, prescence (0,1) of defoliation in the
same cell in the previous year) to predict the proba-
bility of defoliation. The values of regression coeffi-
cients and regression statistics are shown in Table 2.

All coefficients of these models were significant.
The signs of the coefficients made biological sense:
The coefficients for log mass density and log number
of males per pheromone trap were positive in all mod-
els, indicating that the probability of defoliation was
positively correlated with counts of over-wintering
egg mass populations and counts of adult males. This
positive correlation apparently reflects the-obvious
correlation between the abundance of insects and the
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Fig. 3. Maps of pheromone trap counts estimated using
ordinary kriging in SNP and GWNF in 1990,

- 1-500

W 501- 1000
B 1001 - 5000
B > 5000

Fig. 4. Maps of egg mass densities estimated using ordi-
nary kriging in SNP and GWNF in 1990.
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Table 2. Statistics from maximum likelihood estimation of
logistic models

Model Parameter Standard ‘Wald P>
Variable! estimate error Y
ia —-2.11 0.00665 100619 0.0001
EM 0.392 0.00147 70812 0.0001
2a —-2.77 0.0100 76049 0.0001
DIST 0.0316 0.000149 45362 0.0001
3a —-12.3 0.0725 28740 0.0001
MALES 1.71 0.0108 25236 (.0001
4a —(.844 0.00461 33496 0.0001
DEF 1.00 0.0114 7759 0.0001
5a —2.95 0.01086 TT208 0.0001
EM 0.317 0.00158 40399 0.0001
DIST 0,0190 0.000163 13603 0.0001
6a ~011 0.0749 14801 0.0001
FM 0.335 0.00153 48311 0.0001
MALES 1.09 0.0113 9285 0.0001
7 a -1.75 0.00708 61381 0.0001
EM 0.331 0.00157 44662 0.0001
DEF 0.240 0.0131 J34 0.0001
8 a —-10.2 0.0777 17323 0.0001
MALES 1.19 0.119 10080 0.0001
ST 0.0243 03.000162 22650 0.0001
9a —9.74 0.0716 18487 0.0001
MALES 1.36 0.0107 16166 0.0001
DEF 0.756 0.0117 4173 0.0001
10 o —2.18 0.0101 47189 0.0001
DEF 0.132 0.0129 106 0.0001
DIST 0.0259 {0.000156 27600 0.000]
11 a —8.35 0.0776 11595 0.0001
EM 0204  0.00158 34460 00001
MAILES 0.864 0.0119 5280 0.0001]
DIST 0.0147 0.000173 7190 0.0001
12 g —8.049 0.074 11846 0.0001
EM 0.283 0.00161 31107 0.0001
MALES 0.978 0.0111 Tiol 0.0001
DEF 0.192 00130 218 0.0001
13 a —-2.04 00110 53047 0.0001
EM 0.278 0.00163 29018 0.0001
DIST 0.0180 0.000169 11281 0.0001
DEF —-{(.218 0.0137 255 0.0001
14 a —7.46 0.0766 9500 0.0001
EM 0.256 0.00164 24515 0.0001
MALES 0.788 0.0117 4555 0.0001
DEF -.135 0.0136 09 0.0001
IDIST 0.0137 0.000180 5754 0.0001
15 a ~8.64 0.0759 12974 0.0001
DIST 0.0194 (.000169 13140 0.0001
MALES 1.03 0.0115 8022 0.0001
DEF 0.217 0.0127 280 0.0001

'EM, log egg mass density; MALES, log number of males per
pheromone trap; DIST, distance (km) from the 10 males/ trap bound-
ary; DEF, presence (0,1) of defoliation in the same cell in the previous
year.

o

amount of food that they consume. Coefficients for
distance (km) from the 10 males/trap boundary were
also positive for all models, indicating that as distance
from the infested front (generally to the south of the-
area where defoliation was modeled) increased, de-
foliation probability increased. This phenomenon can
be explained by the time lag that occurs between
when gypsy moths are first detected in traps and when
defoliation first occurs (Sharov et al. 1996a, b). If we
had sampled populations farther from the infested
front, this relationship may have been inverse, since
outbreaks presumably collapse as one moves even
farther from the infested front. In areas very far re-
moved from the infested front (e.g., New England),
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Fig. 5. Plots of simulated spray decision errors (percentages) versus values of probability thresholds, p’' used with each

of the 15 models.

there is presumably no relationship between defolia-
tion probability and distance from the infested front.

Coefficients for presence (0,1) of defoliation in the

same cell in the previous year were sometimes positive
(models 4,7, 9, 10, 12, and 15) and sometimes negative
(models 13 and 14). This probably reflects the com-
plexity of the relationship between the presence of
defoliation in the previous year with the probability of
defoliation. When regional populations are rising, the
presence of defoliation in the previous year would be
positively correlated with the probability of defolia-
tion, but when regional populations are declining, the
probability of defoliation is inversely related to the
presence of defoliation in the previous year (Liebhold
and Elkinton 1989, Hohn et al, 1993, Zhou and Lieb-
hold 1995).

Figure 5 shows simulated values of error 2. and error
3 versus values of p’ at GWNF and SNP for each of the
15 logistic models. In all of the models at both GWNF
and SNP, as p' increased, error 1 generally increased
and error 2 generally decreased. This is logical since
ervor 2 = 0 and error 3 = 1 when p” == 0 and error 2 =
1 and error 3 = 0 when p’ = 1. In most of the models,
error 3 was generally less stable relative to p’ than was
error 2; graphs of error 3 often exhibited a peak value
at values of p’ other than 0.1 (Fig. 5). For each model,
error 2 was generally greater in SNP than it was at
GWNF. This probably was caused by the use of
GWNF data for model parameterization; parameters

were probably suboptimal for SNP. 1t is also evident in
Fig. 5 that in GWNF, values for error 2 tended to be
lower than values for error 3. This probably occurred
because in the original data, most cells were not de-
foliated. The maximum likelihood procedure used for
estimation of models 1-15, minimized all errors, and
thereby error 2 values had more impact on the selec-

tion of model parameters than did error 3 values.

Table 3. Daeacision error p&mautagau derived by application of
models to GWNF and SNP data and setting. p =035

GCWNF SNP

Model Error 2 Error 3 Al Error 2 Error d All
ITors rrors

1 16.1 31.4 19.2 45.9 18.8 31,8
2 22.3 45.3 25.4 60.4 20.7 49,1
3 28.2 63.0 275 64.7 52.5 64.3
4 23.3 100.0 274 56.3 100.0 60.2
5 16.3 33.4 19.8 40,3 21,1 28.5
6 15.7 4.5 16.8 49,4 20.5 35.3
(] 156.5 33.2 19.3 50.3 184 36.3
8 21.3 42.1 243 62.7 32.0 54.6
9 23.7 47.4 26.1 604 . 227 52.1
10 208 43.7 4.6 599 = 201 48.3
11 15.3 33.7 194 44.0 211 30.8
12 15.1 al.1 18.2 52.7 200 39.0
13 15.5 33.8 19.5 502 21.4 36.1
14 14.7 314 189 514 21.4 S37.0
156 194 27.1 21.5 593 265 48 2

M
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Fig. 6. Plots of simﬁlated spray decision errors (percent-
ages} versus values of threshold egg mass densities.

Table 3 shows values for error 2 and error 3 when
p' = 0.5, As noted above, there was a tendency for
decision error levels to be greater when models were
applied at SNP than at GWNF presumably because
parameters were chosen using data only from GWNF.
Decision errors from GWNF were generally greatest
for models that incorporated only one independent
variable and were generally lowest for models that
incorporated 3 or 4 independent variables. A note-
worthy exception to this trend was model 1 which
yielded very low decision error rates, especially error
2. Model 1 was also exceptional in its performance
using data from SNP as well, When all 15 models were
applied to SNF data, models 1, 5, and 11 yielded the
lowest total of the 2 decision errors. All 3 of these
models included log egg mass density as an indepen-
dent variable. - .

Decision errors derived using 624 or 1,250 egg
masses per ha treatment decision thresholds were in
the same approximate range as errors from models 1,
5, and 11 (Fig. 6; Table 4).

Error 2 was greater at SNP than at GWNF but error
3 was lower, The sum of the 2 errors was greater at SNP
than at GWNF. This difference suggests that the
greater decision errors observed at SNP using models
1-15 (Table 3) may have been partially due to some
inherent lack of association between log egg mass
density and defoliation, rather than completely the
result of parameterization of models using GWNF
data,

The results shown in Tables 3 and 4 indicate that use
of traditional egg mass density thresholds may perform
as well, or better than, the logistic models presented
here. The only exception may be models 5 and 11
which appeared to perform as well or better than the
egg mass density thresholds in terms of reducing de-
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cision errors. Both models 5 and 11 contain the terms
log egg mass density and distance (km) from the 10
males/trap boundary, suggesting that information on
the distance of the stand relative to the expanding
gypsy moth front may provide information useful for
predicting defoliation and making management deci-
sions. Thus, gypsy moth populations appear to reach
defoliating densities in a predictable manner, as the
leading edge passes through an area (Sharov et al.
1996a) although distance by itself (model 2) provided
apoor predictor of defoliation (Table 3). In areas, such
as New England, where gypsy moth populations have
been established for many years, distance to the ex-
panding front is likely irrelevant to the probability of
defoliation and thus these models are only appropriate
in areas near the expanding front. Capture of males in
pheromone traps, MM, also was a very poor predictor
of defoliation in a single term model (model 4, Table
3). Liebhold et al. (1995) found that counts of males
in pheromone traps were much lower in spatial cor-
relation with defoliation than were counts of egg
masses in Massachusetts. These results support that
conclusion. This lack of correlation is probably the
result of male moth dispersal over considerable dis-
tance (Carter et al. 1992, Ravlin et al, 1991, Liebhold
et al. 1995),

Table 4 and Figure 6 illustrate that the choice of an
egg mass density threshold for use in treatment deci-
sion-making should depend upon the manager’s ad-
versity to error 2 relative to error 3. For example, a
forest products company may own a stand of high-
value veneer trees that is approaching a scheduled
harvest event and would therefore be very adverse to
any defoliation events that might put those trees at risk
to mortality. Thus, the company may choose to use an
egg mass density threshold of 100 egg masses per haor
tess that minimizes error 2 (Table 4). Because the
company will realize considerable profit in the near
future when the trees are harvested, it may be willing
to spend money on treatments when they may not
have been necessary, error 3. In contrast, a private
individual may manage a woodlot primarily for its
wildlife and scenic value. In this situation, the land-
owner may be more adverse to unnecessary applica-
tions of pesticides (error 3) because of concern over
impact on nontarget organisms and other environ-
mental concerns. In this case, the landowner may opt
for a treatment threshold of 1,000 egg masses per
hectare (~500 egg masses per acre) or greater to
minimize error 3 (Table 4), In this case, the landowner
may be willing to tolerate a higher frequency of de-
foliation when the decision was made to not treat an

Table 4. Decision error percentages derived by application of egg mass density treatment thresholds to GWNF and SNP
| |

Egg mass density threshold __GWNF SNP
(egg masses/ ha) Error 2 Error 3 All errors Error 2 Error 3 All errors
625 _ 16.5 30.6 19.2 46.6 184 32.5
(250 egg masses/acre)
1,250 18.1 27.8 19.6 493 17.0 35.1

(500 egg masses/acre)
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area (error 2) because the impacts of defoliation on
wildlife and scenic values may be considered less sig-
nificant,

While this study failed to yield landscape-level
models that performed substantially better than the
traditional application of egg mass density thresholds
(Tables 3 and 4), it is possible that superior landscape-
level models may be developed in the future. For
example, the models developed here did not incor-
porate any landscape-level information on forest com-
position and it seems likely that certain habitat data
may aid considerably in predicting future defoliation
events. Montgomery (1990) reported that inclusion of
data on forest composition increased the predictive
power of stand-level defoliation models. Landscape-
level data on forest composition over the eastern
United States are currently available only at very
coarse spatial spatial scales (Liebhold et al. 1997).
However, in the future, new map data may become
available and these should be useful in models that
predict gypsy moth defoliation.

This study represents the first exploration of error
rates associated with treatment decisions that are
based upon egg mass density thresholds (Fig. 6, Table
4). Tt is obvious that the use of these thresholds results
in very large values of error 2 (16-49%) and error 3
(17-31%). It is perhaps surprising from Figure 6 that
the use of egg mass thresholds for gypsy moth treat-
ment decision-making results in such large levels of
error, The data used in this study were collected in a
rapidly rising gypsy moth population in a highly sus-
ceptible forested area and these error probabilities
cannot be universally applied elsewhere in the gypsy
moth’s range. Nevertheless, the conclusion that the
use of egg mass density thresholds.is an error-prone
practice is consistent with recent recognition that the
relationship between egg mass density and defoliation
is highly stochastic (Montgomery 1990, Liebhold et al.
1993b). These high errors highlight the need for better
methods for predicting defoliation so as to develop
more effective gypsy moth management practices.
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