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Abstract

Eradication is the deliberate elimination of a species from an area. Given
that international quarantine measures can never be 100% effective, surveil-
lance for newly arrived populations of nonnative species coupled with
their eradication represents an important strategy for excluding poten-
tially damaging insect species. Historically, eradication efforts have not al-
ways been successful and have sometimes been met with public opposition.
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Establishment:
reproduction and
growth of a nonnative
population to a level at
which extinction is no
longer likely

Prevention:
operation of a
biosecurity system to
preclude new
organism incursions,
through quarantine
and inspection

Treatment: a method
contributing to
eradication by either
culling individuals or
suppressing mating

Surveillance:
post-border survey for
the presence of
nonnative populations

Eradication: the
deliberate extinction of
a species from a given
region

Pest Risk
Assessment:
assessment of the
potential of a species
to invade and create
impacts

But new developments in our understanding of the dynamics of low-density populations, the
availability of highly effective treatment tactics, and bioeconomic analyses of eradication strategies
offer new opportunities for developing more effective surveillance and eradication programs. A
key component that connects these new developments is the harnessing of Allee effects, which
naturally promote localized species extinction. Here we review these developments and suggest
how research might enhance eradication strategies.

INTRODUCTION

Biological invasions, the movement and establishment of species outside their native ranges, are
occurring in large numbers around the world, mostly as unwelcomed by-products of international
trade and travel (77). The Insecta, the world’s most diverse taxon, not surprisingly comprise the
majority of animal invasions worldwide. Invasive insect pests can profoundly affect agricultural
productivity, forest resources, human health, and a wide range of natural ecosystem services (15,
103, 106).

Biological invasions comprise four conceptual stages: arrival, establishment, spread, and impact
(69). Invasions begin with the arrival of a nonnative species to a previously uninhabited area.
Most arriving populations vanish without intervention; however, some succeed in growing to
self-sustaining levels, thereby considered established, and initiate spread into adjacent regions.
Although most nonnative organisms that establish in new habitats are benign and rarely noticed
(5), some cause economic and ecological impacts that exceed those in their native habitat.

To prevent the arrival of nonnative species, governments may impose quarantine measures
to restrict the movement of certain goods, or require that imported material receive treatments
such as fumigation (52). Cargo and passengers arriving at ports of entry or border crossings
may be subject to inspection to prevent accidental pest introductions. Despite the best efforts of
governments, these measures can never block the arrival of all nonnative insect species; continual
increases in global trade and passenger movement may overwhelm mitigation measures.

Here we address the roles of surveillance and eradication in the management of recently estab-
lished, nonnative insects. Eradication represents the deliberate elimination of an invading species
from an area (67) and is facilitated by early detection of invasion events. Surveillance systems to
detect newly established populations can involve area-wide deployment of traps, visual searches,
and reports by concerned citizens (54). Eradication is typically not attempted for most newly de-
tected insect populations because they are not detected early enough for eradication to be practical,
treatments for accomplishing eradication are not available, or the costs of eradication outweigh the
species’ anticipated impacts. For some species, however, eradication can be sensible if it prevents
future extensive direct and indirect impacts (84, 100).

Eradication can be controversial. A large proportion of initial establishments occur in urban
or suburban areas where inter- and intracountry movement of goods and people first occurs (23).
Consequently, eradication programs are often conducted in residential areas, where insecticide use,
aerial applications, removal of host plants, and other treatments may evoke a negative response
among residents (74, 81). Despite hundreds of successful insect eradication projects (57, 121),
skepticism of government programs and presumed failure are common beliefs (22, 80). Some
scientists have publically questioned whether eradication is technically feasible (21, 25, 89). In
part, skepticism reflects the historical lack of scientific theory behind eradication, the scarcity of
research on the population biology of insect eradication since the early work by Knipling (59),
and the seemingly impossible feat of eliminating every individual in a population.

336 Liebhold et al.

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
6.

61
:3

35
-3

52
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
.S

. D
ep

ar
tm

en
t o

f 
A

gr
ic

ul
tu

re
 (

U
SD

A
) 

on
 0

3/
21

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



EN61CH18-Liebhold ARI 1 February 2016 13:2

Several previous reviews have addressed insect eradication (79, 80, 89, 92). These earlier works
generally focused on selected case studies, and all preceded modern developments in bioeconomics,
surveillance, eradication technologies, and the population biology of eradication. Recent advances
in our understanding of the dynamics of sparse populations are essential for developing successful
and economically efficient strategies for eradicating nonnative insect pests. Contemporary work
on bioeconomics has identified the crucial role of economic considerations in the selection of
surveillance and eradication strategies. Here we review past insect eradication efforts, describe
advances in theory and technology, and identify key research needs to further progress the science
of eradication.

HISTORICAL ERADICATIONS

The history of insect eradication programs arguably began in 1890 with an expensive and ulti-
mately unsuccessful effort by Massachusetts authorities to eliminate the gypsy moth (Lymantria
dispar) from the Boston area (28). Since then, there have been at least 750 organized attempts
to eradicate insect populations (57). Eradication may be considered for the most economically
damaging species but may be practical only for a small subset of them. For example, at least 3,540
nonnative insect species are established in North America (132), but only 63 species have been
targeted for eradication (57). Insect eradication has been attempted in at least 92 countries world-
wide, but most programs have occurred in North America (48%), Oceania (20%), and Europe
(16%) (57, 121).

Of the 672 arthropod eradication programs analyzed by Tobin et al. (121), 395, 110, and 167
were considered successful, failures, or of unknown outcome, respectively. A more recent query of
the GERDA database (57) yielded totals of 508, 120, and 132 in these same categories. Such data
should be treated with caution, however, because there may be substantial biases in reporting:
Successes may be more widely reported than failures, and many small-scale programs may go
unreported. The success rate for certain groups, such as tephritid fruit flies, may be particularly
high as a consequence of a variety of factors, including the availability of effective surveillance and
treatment technologies (114).

The number of insect eradication programs implemented per year has increased dramatically
over time (121), perhaps because scientists have developed more effective and efficient tools for
detecting and eradicating certain taxa such as Lepidoptera and tephritids (Table 1). Eradication
of these taxa has become almost routine in some regions. For example, more than 200 programs
have targeted 17 species of fruit flies in 31 countries, using male annihilation, the sterile insect
technique (SIT), and other methods (114). These programs are generally successful, with no
evidence of long-term establishment in most cases examined (for a counterargument, see 87, but
also see 42).

Pluess et al. (90, 91) analyzed 136 eradication programs targeting plant pests and weeds and
found that the geographic area of the focal infestation significantly affected eradication success.
Tobin et al. (121) evaluated 672 programs targeting 130 arthropod species and also identified
a negative association between success rate and the size of the area infested. But their analysis
indicated that detectability of the target pest was one of the most critical factors associated with
eradication success.

Over 80% of the insect eradication attempts recorded by Tobin et al. (121) collectively targeted
species of Diptera (41%), Coleoptera (21%), and Lepidoptera (20%). Eradications of Diptera (pri-
marily fruit flies) and Lepidoptera (largely gypsy moths) have had a high success rate undoubtedly
because effective and cost-efficient semiochemical lures facilitate early detection and delimitation
and because effective treatment tactics such as SIT are available (29, 30, 58). In contrast, the lower
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Table 1 Examples of typical characteristics of eradication projects targeting various insect taxa

Taxon
Numbers of
programsa Surveillance methods Treatment tactics Example species (reference)

Fruit flies (Tephritidae) 213 Food attractant traps,
parapheromone traps

Mass trapping, SIT,
insecticidal baits, host
destruction

Oriental fruit fly (Bactrocera dorsalis
complex including Bactrocera
papayae) (108)

Melon fly (Bactrocera cucurbitae)
(60)

Moths (Lepidoptera) 135 Pheromone traps Microbial pesticides,
mating disruption,
SIT, host destruction,
mass trapping

Painted apple moth (Teia
anartoides) (111)

Gypsy moth (Lymantria dispar) (44)

Mosquitoes (Culicidae) 64 Larval/pupal visual
survey, ovitraps, host
attractant traps, light
traps

Chemical insecticide
treatment of water,
SIT

Yellowfever mosquito (Aedes
aegypti ) (128)

Southern saltmarsh mosquito
(Aedes camptorhynchus) (55)

Ants (Formicidae) 54 Food attractant traps,
visual surveys

Chemical insecticide
baits, direct chemical
insecticide application

Bigheaded ant (Pheidole
megacephala) (50)

Argentine ant (Linepithema humile)
(102)

Longhorned beetles
(Cerambycidae)

43 Visual survey for
infested trees, host
attractant traps

Host destruction,
systemic insecticides

Asian longhorned beetle
(Anoplophora glabripennis) (43)

Citrus longhorned beetle
(Anoplophora chinensis) (125)

aAccessed from GERDA (57) on February 25, 2015.
Abbreviation: SIT, sterile insect technique.

success rate for Coleoptera reflects the diversity of taxa targeted for eradication and the lack of
effective surveillance tools.

SURVEILLANCE

Surveillance surveys are conducted to detect the presence of newly founded populations that are
candidates for eradication. Following detection, delimitation surveillance is used to confirm the
persistence of the population, delimit its spatial extent, and verify eradication success (Figure 1).

Effective surveillance tools (e.g., traps) are crucial for detecting and delimiting newly established
populations when they are still small, thereby minimizing the cost of eradication as well as the
probability of failure. Many Lepidoptera use long-range sex pheromones, and traps baited with
them are generally highly effective tools for detecting and delimiting populations (4, 113). When
such pheromones are used as attractants for surveillance, it is virtually impossible for reproductively
viable populations to persist for long periods at subdetectable levels if the traps are spaced at
distances near males’ typical dispersal range; if they are unable to find traps, they will be unable
to find mates (122).

Information about chemical communication greatly facilitates surveillance efforts, but such
information is not always available prior to the detection of a potentially damaging pest. Effective
lures and trapping systems can sometimes be developed in a relatively short time frame, but if
attractants cannot be identified and synthesized quickly, there may be alternatives. For example,
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Base surveillance

Pest not detected Pest detected Treatment

Delimitation Treatment Eradication evaluation

Phase 1 Phase 2 Phase 3 Phase 4

Figure 1
Conceptual surveillance strategy for eradication: base surveillance, delimitation, confirmation of treatment effectiveness, and
verification of eradication.

in programs to eradicate the white-spotted tussock moth (Orgyia thyellina) and the painted apple
moth (Teia anartoides) from New Zealand, delimitation was accomplished using traps baited with
live females (51, 111).

For species that do not produce long-range sex pheromones or aggregation pheromones, detec-
tion and delimitation must rely on less powerful attractants, such as host compounds, or on visual
surveys (16, 18). For example, a program to eradicate the Asian longhorned beetle (Anoplophora
glabripennis) from Chicago (1998–2003) depended on visual surveys by tree climbers and ground
crews to identify infested hosts. This process was cumbersome, expensive, and relatively inef-
fective, especially when trees were newly infested with few signs or symptoms. Consequently,
treatments consisting of host removal and application of systemic insecticides could not target
trees precisely but instead were applied to all potential host trees within 200 to 800 m of every tree
previously determined to be infested (43). Despite these difficulties, the Asian longhorned beetle
was ultimately eradicated from Chicago.

When effective tools are available, questions arise about how to best design a surveillance system
to optimize detection of newly founded populations small enough to be feasibly eradicated. For
example, traps might be spatially deployed in a variety of patterns, from uniform to random.
The importance of the spatial arrangement depends on the sensitivity of the trap as well as the
budget available for trapping; for example, dynamic trapping arrangements (e.g., rotating grids)
can increase the efficiency of surveillance if the traps are sparse relative to the size of target
populations (8). At a landscape scale, determining the optimal density of traps requires balancing
surveillance costs with costs of eradication (Figure 2). Heavy investment in surveillance (i.e., high
trap density) increases the likelihood that newly established populations will be detected early,
which reduces eradication costs. In contrast, deploying fewer traps is less costly initially but delays
detection, resulting in larger populations that are more expensive to eradicate (12, 31, 32, 76).

In heterogeneous landscapes, the optimal intensity of surveillance is affected by regional
variation, with greater surveillance intensity preferred in regions with higher probabilities of
arrival and establishment, higher costs of eradication, and lower surveillance costs (31, 32, 46).
For example, intensive surveillance may be appropriate at ports near industrial areas at higher
risk for arrival and establishment of certain nonnative insects (4, 94). Other invasive insects tend
to establish relatively frequently in urban areas (23), where surveillance is typically less expensive
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Co
st

 ($
) 

Density of surveillance points 

Eradication costs
Surveillance costs
Total costs
Minimum total costs

Figure 2
Composite and total costs of invasion as a function of surveillance intensity (density of surveillance points).
Total costs are the sum of eradication costs and surveillance costs. Eradication costs decrease with increasing
surveillance intensity because invasions are discovered earlier. Optimal surveillance intensity occurs where
total costs are lowest (adapted with permission from Reference 32).

Incursion: the
post-border
occurrence of a new
nonnative population

than in remote, difficult-to-access environments. Risk-based analyses typically focus more intense
surveillance in urban areas and near ports, but some effort should also be allocated to regions
with a lower probability of invasion (32).

The rate and method in which an organism spreads, whether through natural dispersal or
anthropogenic transport, can affect the likelihood of early detection and delimitation. For example,
transport of infested material can result in secondary populations establishing a considerable
distance from the main infestation. These satellite populations can challenge eradication efforts,
particularly when surveillance tools are relatively inefficient (48).

In addition to detecting and delimiting pest incursions, surveillance helps managers monitor
the progress of eradication programs and evaluate success or failure. Demonstrating success is
especially problematic because it can be difficult to determine whether a population lingers at
subdetectable levels. Several statistical tests have been designed for this purpose. One approach
relies only on sighting records, and was originally developed to analyze endangered populations
and fossil records, for which survey efficacy is not known (97). These basic tests may be modified to
take into account the rate of population decline (107), relative search effort (73), and the reliability
of data (63, 118). Another approach, developed by veterinarians for determining whether a region
is free from animal diseases (71), has been applied to insect eradications (26, 56). This method
relies on estimates of survey tool sensitivity, which may be directly quantified for insect traps
(101, 115, 123). It also requires the user to specify a minimum target population size for detection
that should ideally correspond to any potential extinction threshold. An additional, Bayesian
approach was developed for analyzing vertebrate eradications (93). These methods estimate the
declining probability that a population is present at the end of an eradication program, allowing
eradication to be declared successful once this falls below some predefined threshold. Alternatively,
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Allee effect:
decreasing individual
fitness with decreasing
population size or
density; if strong
enough, Allee effects
can drive populations
to extinction

Interception:
detection of a
nonnative organism at
the border or
transitional facility

the problem may be reframed in bioeconomic terms such that eradication is declared when the
costs of continued monitoring exceed the expected costs of stopping too soon (96). This approach
recognizes that the choice of survey and eradication investment is at least in part an economic
decision, and the threshold should be reasonably informed by both biology and economics.

EXPLOITING ALLEE EFFECTS

Records of pest interceptions at ports of entry show that many more nonnative species arrive than
establish and that the probability of establishment increases with the number of arriving individ-
uals (17). The magnitude of propagule pressure is perhaps the most important determinant of
establishment success (68, 105). Conservation biologists have long recognized the important role
of stochasticity and Allee effects in the extinction of low-density populations (24, 62). Environ-
mental and demographic stochasticity contribute to extinctions of invading populations and help
explain why propagule pressure affects their establishment (27, 65).

The Allee effect, which is the positive relationship between individual fitness and either popula-
tion size or density, can be a considerable constraint on the persistence of low-density populations
(Figure 3) (24, 109). Inbreeding depression, reduced ability to overcome host defenses, and failure
to saturate or repel natural enemies are among the many causes of Allee effects (7, 61). Perhaps
the most ubiquitous cause in sexually reproducing species is failure to locate a mate. Males and
females often have difficulty finding each other in low-density populations, even for species that
utilize powerful sex pheromones (41).

At the population level, demographic Allee effects represent a decline in the per capita popula-
tion growth rate as population density decreases. Weak Allee effects indicate a situation in which
population growth rate declines with decreasing density but remains positive at all densities. Con-
versely, Allee effects are considered strong when population growth rate becomes negative at low
densities. The latter situation gives rise to the Allee threshold, which is the minimum number
of individuals (or density) that must be present to sustain a viable, reproducing population (24)
(Figure 3).

Allee thresholds have profound implications for eradication programs because eliminating a
population does not require killing every last individual. Instead, populations need only be reduced
below the Allee threshold and extinction should proceed without further intervention (65, 67,
120) (Figure 3). However, the unpredictable rate and severity of stochastic effects coupled with
uncertainty in estimating population parameters and size contribute to uncertainty in estimating
Allee thresholds (9). Therefore, to ensure success, managers must be conservative in their choice
of target population densities when implementing strategies to reduce populations below the Allee
threshold. Understanding the role of Allee effects in eradication is also important because certain
treatments can be used to intensify existing Allee effects, increase Allee thresholds, or create effects
that previously did not exist (67, 120) (Figure 3). For example, Allee effects arising from mate-
location failure can be strengthened by tactics such as mating disruption, male culling (either traps
or lure-and-kill methods), and SIT (13, 67, 117, 131).

TREATMENT TECHNOLOGIES

For more than 125 years, development and adoption of new treatment tools have characterized
the evolution of insect eradication. Initially these developments were driven by a need for greater
efficiency [e.g., hand removal of gypsy moth eggs in the 1880s was replaced by successively more
sophisticated tools, culminating in aerial application of biopesticides in the 1970s (28, 119)], but
more new tools are needed to address shifting boundaries in social acceptability. Aerial application
of broad-spectrum chemical insecticides was once commonplace but has now been replaced largely

www.annualreviews.org • Insect Eradication 341

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
6.

61
:3

35
-3

52
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
.S

. D
ep

ar
tm

en
t o

f 
A

gr
ic

ul
tu

re
 (

U
SD

A
) 

on
 0

3/
21

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



EN61CH18-Liebhold ARI 1 February 2016 13:2

A1 A2
Population increases

Population declines

K
0

N

dN
/d
t

a

A1 A2

K

Extinction 

–∑
 d
N

/d
t

Population size 

b
N

Figure 3
Allee effects and their application to eradication. (a) In the left hand portion of the plot, the presence of an
Allee effect is indicated by declining growth with decreasing density. The Allee threshold, A1, occurs where
the growth curve crosses 0. Eradication can be achieved by decreasing population size, N, below A1, or by
modifying the growth rate function such that the new Allee threshold, A2, exceeds N. (b) The same
dynamics, with the population size conceptualized as a rolling ball on a hill ( green curve) defined by the
cumulative negative rate of change. Here eradication may be achieved by pushing the ball over the brow of
the hill (Allee threshold A1) or by modifying the growth curve to change the shape of the hill (red curve). K
represents the carrying capacity.

by technologies with fewer impacts on nontarget species (47). The use of insecticides is now much
more localized and targeted. For example, systemic insecticides, usually applied to the soil or
injected into the base of tree trunks, have been used in eradication programs targeting wood borers
such as the Asian longhorned beetle (43). Most ant eradication programs still rely on insecticides,
but usage has shifted from spraying contact insecticides to broadcast spreading of insecticidal
baits, which have a much lower impact on nontarget species (49). Microbial insecticides, such
as Bacillus thuringiensis var. kurstaki (Btk), are more target specific, and these are frequently used
in eradication programs targeting Lepidoptera, including incipient populations of gypsy moth in
North America (44, 45). In a few instances, inundative releases of parasitoids have been combined
with other eradication tactics (114).

Many of the emerging tools for achieving eradication are based on insect sex pheromones, which
are species specific and are generally considered to have no adverse impacts on human health or
the environment (53). They also typically function to enhance Allee effects by interfering with
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mate location and thus intensify one of the main factors that naturally limit establishment of many
invading insect species (67). Sex pheromones are often used in mass trapping, a tactic that reduces
successful mating and reproduction by removing large numbers of adult insects, usually males.
Mass trapping of moderate- to high-density populations is less practical because an extremely high
percentage of males must be removed from the area to substantially reduce mating success (98,
130, 131). Mass trapping for eradication is most successful during the early phases of invasion,
when population density is low (30, 115).

Mating disruption, another tactic that exploits sex pheromones, has been used in a number
of responses targeting Lepidoptera (110, 116). Males are prevented from locating females by
saturating the environment with sex pheromones that are applied either from the air or ground
by slow-release devices. Unfortunately, this technique disrupts surveillance trapping, which may
make it difficult to monitor eradication progress (85).

As an eradication treatment the SIT has virtually no adverse impacts, is perceived as acceptable
by residents (38), and has a historical record of success (60, 114). In one of the most well-known
eradication programs, SIT was used in the 1960s to eradicate the screwworm (Cochliomyia
hominivorax) from the southern United States. Millions of males were reared, sterilized, and
released. Their wild mates could not produce viable offspring, resulting in the decline and eventual
extirpation of the population (79). Models show that SIT is effective particularly for species in
which males, but not females, are capable of multiple matings (6, 131). Unfortunately, facilities
for insect mass-rearing and irradiation can be expensive and thus limit the practicality of SIT,
particularly if target populations are not small. In addition, technical difficulties of sterilization
may constrain the ability of sterilized adults to compete successfully with wild males (99).

Eradication programs sometimes destroy host plants, often in conjunction with other tactics,
to control target pest populations. For example, attempts to eradicate the painted apple moth, Teia
anartoides, from Auckland, New Zealand, combined host plant destruction with Btk application
and SIT (111). An ongoing effort to eradicate the boll weevil, Anthonomus grandis grandis, from
the southern United States uses bans on planting cotton, along with other tactics, in combination
with host plant destruction (2). Host plant destruction was unsuccessful for eradication of emerald
ash borer (Agrilus planipennis), in large part because of rapid spread and ineffective methods for
delimiting populations (48), but has been a component of successful eradication programs targeting
the Asian longhorned beetle (43).

Many successful eradication programs have combined two or more tactics to eradicate pop-
ulations (57). In some cases, multiple tactics may target different parts of a single population.
For example, a program may apply pesticides to a higher-density core region of an invasion and
mating disruption to sparser, peripheral areas (117). Treatments such as habitat destruction may
be applied at the periphery of a population to contain it while a different tactic is used to drive
resident populations to extinction.

Often, two or more types of treatments are applied in the same area. Certain combinations
of tactics may act synergistically in raising the Allee threshold and facilitating eradication, but
in other cases, multiple tactics may interfere with each other when applied in the same location
(10). Synergy is most likely when a density-independent treatment (e.g., pesticides) is paired with
a density-dependent treatment (e.g., mating disruption) (117). Multiple component Allee effects
may combine and interact in complex and nonlinear ways to determine an overall demographic
Allee effect (7, 24), and such synergistic interactions can be exploited to reduce eradication costs
(7, 10, 117). Blackwood et al. (10) used a model to show that insecticides and mating disruption
may act synergistically. Ultimately, the benefit of combining tactics is a question of economics.
Synergy exists when expenditure on two tactics results in a greater shift in the Allee threshold than
spending the same amount on any single tactic (10).
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Most successful eradication programs include quarantine measures to limit the transport of
potentially infested material to uninfested areas. The life stages of many organisms are cryptic and
may be spread accidentally with nursery plants, logs, firewood, produce, and other commodities.
If such transport is not curbed, then establishment of secondary populations can further challenge
eradication efforts (48, 66).

SOCIAL FACTORS

Despite the generally high efficacy of conventional pesticides, relatively few are desirable for aerial
application, particularly over ecologically sensitive or urbanized areas. Microbial pesticides, most
notably Btk toxins, are considered more acceptable for aerial application over urban areas and are
frequently used in programs to eradicate Lepidoptera (45). As part of the 1996–1997 program
to eradicate white-spotted tussock moth from Auckland, New Zealand, some residential areas
were aerially treated with Btk 23 times (51). There is little evidence of adverse effects of aerial
Btk treatments on human health (86, 88). Concerns exist about the effects of Btk treatments on
nontarget Lepidoptera (14, 78); however, most eradication treatments are applied over relatively
small areas such that immigration might be expected to facilitate rapid recovery of affected species.
Indeed, the effects of Btk treatments on nontarget populations are generally temporary (39).
Moreover, any negative effects of Btk on nontarget species must be considered in relation to the
possible direct and indirect effects of invasive target on these species (39, 70, 95).

Although removal of host material may be a highly effective eradication treatment in some
circumstances, it may face intense opposition by local residents. During the program to eradicate
brown spruce longhorn beetle (Tetropium fuscum) from Nova Scotia, legal action was taken by
residents to suspend the felling and removal of host trees from a park where the infestation was
first discovered (75). A similar legal action was taken in Ohio in response to host removal as part
of the emerald ash borer eradication program, but was unsuccessful (83).

A misinformed or ill-informed public may fail to recognize the difference between chemical
insecticide treatments and semiochemical-based eradication treatments, such as mating disruption
and mass trapping, which have little to no effect on human health or on nontarget species. Indeed,
this was the case with the aborted eradication program against the light brown apple moth (Epiphyas
postvittana) in California (2007–2008). When mating disruption was implemented, hundreds of
residents complained of impacts on their health and on the health of birds and pets (22), and some
scientists argued that eradication was futile (21). Ultimately, this program was canceled (112)
despite the lack of convincing evidence of impacts on human health or other nontarget effects
(124) and despite subsequent demonstration that mating disruption is efficacious (19).

One lesson learned from the many instances of adverse public reaction to eradication programs
is the need for effective outreach and education of local residents (72, 74). In most cases when public
opposition thwarted eradication programs, the public lacked information about why eradication
was proposed, which tactics would be employed, and how the program would likely affect their lives
or communities. In the absence of public outreach, residents are likely to be suspicious, and some
will be sympathetic to conspiracy theories and other radical arguments. The successful program to
eradicate the painted apple moth from Auckland dedicated approximately one-third of the entire
program budget to public outreach (11). Similarly, public support generated by extensive outreach
played an important role in the ultimate success of the program to eradicate the Asian longhorned
beetle from Chicago (3).

An inherent social problem facing many eradication programs is the disconnect between those
who bear the costs and those who benefit. For example, when an agricultural pest initially estab-
lishes in an urban area, local residents may perceive little motivation to accommodate eradication
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Biosecurity:
suppression of
biological invasions
through collective
actions offshore, at the
border and postborder

treatments. Social scientists have recognized that regional management and eradication of bio-
logical invasions can be achieved only if all stakeholders cooperate (34, 36, 129). Coordination
may be facilitated by top-down and middle-out approaches that promote education, regulation,
incentives, and increased communication among all stakeholders.

A robust economic analysis that compares costs and benefits should always be conducted to
assess any proposed eradication program (18). The benefits may be considerable because without
eradication a localized population may spread across a large area, potentially accruing massive im-
pacts. However, discounting future anticipated impacts back to the time of eradication diminishes
the value of averted damages (33, 35, 84, 100). Ideally, such a cost-benefit analysis should incor-
porate uncertainty, not only in the likelihood of eradication success, but also in the anticipated
damage should the pest become established. Further economic research is needed before methods
accounting for such uncertainty can be developed.

FUTURE CHALLENGES

Simberloff (104) argued that eradication of newly founded nonnative species should be attempted
more frequently than has historically been the case. In hindsight, the eradication of many estab-
lished invasive insect pests would have been economically beneficial. Eradication may not have
been attempted when these invasions occurred because the magnitude of the potential impacts
of the pest were underestimated or perhaps ignored, because surveillance was inadequate to de-
tect invading populations early enough, or because decision makers simply did not appreciate that
eradication was a viable option. Recent reviews (90, 121) have demonstrated that insect eradication
is feasible in many cases, and we highlight here its importance to enhancing biosecurity efforts.

Researchers can use risk analysis to identify potentially invasive species for which eradication
may be practical (64, 82). This presumes, of course, that risks associated with a potentially invasive
insect species can be assessed. Although this presumption is true for many insects that are pests in
their native range or have become invasive elsewhere, there remain many species that are novel
and hence not adequately studied. For example, the emerald ash borer is largely a secondary pest
in its native range in China and Korea, where it colonizes severely stressed or dying native ash
trees (Fraxinus spp.). As such, little to no information on its biology and control was available when
it was detected in North America, where it has caused widespread mortality of ash and continues
to spread (48).

Development of more effective area-wide surveillance systems for high-risk species should also
be a high priority to increase the probability that incursions will be detected early enough so
that eradication is feasible. Improved methods are critically needed to facilitate early detection of
insect taxa that do not produce long-range pheromones. Even when attractants are available, the
efficiency of surveillance programs can be further improved. For example, risk mapping (127) and
bioeconomic optimization (31, 32) can ensure that surveillance is carried out over large regions
in a cost-effective manner. Opportunities exist to efficiently coordinate surveillance for multiple
target species. For example, attractants for several species can often be combined in a single trap
(20). Finally, citizen scientists can contribute to national invasive species surveillance systems.
Efforts to connect with and more fully exploit this resource are needed (1, 37, 40). Similarly,
new treatment tools will be needed for a wider range of invasive species, as social acceptability
increasingly defines which tools may be used. Future treatments should ideally be target specific,
possibly exploiting target genetics, and should be used in complementary combinations.

More work is needed to better understand the social issues related to eradication. Commu-
nication strategies, such as educating stakeholders and encouraging stakeholders to participate
and cooperate with eradication programs, would help residential communities understand
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expectations prior to incursions (72, 126). Programs in urban areas are particularly challenging
partly because effective, socially acceptable treatments for many insect groups are lacking (38,
110), and better approaches for engaging stakeholders are needed. Thus, both biological and
social aspects of eradication warrant further research.

SUMMARY POINTS

1. Insect eradication is feasible and has often been successful.

2. Given current globalization trends, eradication is playing an increasingly important role
in nonnative pest exclusion.

3. Knowledge of population dynamics, insect behavior, treatment efficacy, and bioeco-
nomics is key to developing more successful surveillance and eradication programs.

4. Allee effects often dominate the dynamics of invading populations; eradication can be
accomplished by reducing a population below the Allee threshold rather than by elimi-
nating every individual.

5. Investment in surveillance programs is crucial to reducing costs and increasing success
of eradication efforts.

FUTURE ISSUES

1. Eradication programs often must be carried out in urban settings, which presents par-
ticular challenges; more acceptable eradication technologies and new strategies for en-
gagement with the public through better communication are needed.

2. Improved surveillance systems across a wider range of invasive taxa are needed.

3. There is a need to better engage the public in surveillance activities.
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